
SECOND
EDITION

Ferrari
Russo

The most comprehensive collection of
ready-to-use solutions in DAX for Power BI,

Analysis Services, and Power Pivot

Alberto Ferrari
Marco Russo

S E C O N D E D I T I O N
PREV

IEW

 ﻿ ﻿ xv

Introduction

A t SQLBI we have a beautiful job: we are world-wide trainers and consultants. We meet thousands of
people all over the world every year: a crowd of very diverse persons, sharing the same passion for

Business Intelligence and DAX. We are asked to solve scenarios of various complexity by our students and
customers.

Say a student approaches you because they need to compute the number of new customers for their
report. You solve the problem once, twice, three times… And at some point, you feel that the next time you
need to answer the same question, you would love to have a ready-to-use solution. This is the reason we
started the daxpatterns.com website in 2013. We started collecting patterns that repeat themselves. We
created a collection of DAX formulas aimed at solving the most frequently-asked questions we receive. At
that time, the goal was not to write a new book. Instead, our goal was to create some sort of memory bank
for the solutions we would find. We thought we would be the main users of our own website.

As is often the case, real-life does not go according to plan. This time, for the better. The website had a
tremendous success. Users downloaded the samples and achieved two different goals: they found a ready-
to-use solution to their problems, and they improved their DAX skills based on the formulas we authored.
Because of the different file formats, we included samples for Excel 2010 and Excel 2013 – the latter still
works with later versions of Excel. Eventually, we collected the content of the website into a book. That was
the first edition of DAX Patterns. It was at the end of 2015. At the time, we had not yet published the first
edition of The Definitive Guide to DAX. Therefore, we included a short introduction to DAX in the DAX
Patterns book.

Many things changed over the following five years. DAX evolved with many useful features. Most
importantly, Power BI hit the market and the number of users adopting DAX grew at an exponential rate.
Today, most of the DAX users create a Power BI solution. When we published the first edition of this book,
Power BI had not even been announced yet.

During these five years, the process of collecting patterns continued. We met more students, we solved
more problems, we also got better and better at DAX. Plus, we now had thousands of users who were able
to provide feedback on previous patterns. Studying user comments gave us a better picture of what our
readers needed. In parallel, we went on to publish two editions of The Definitive Guide to DAX. At that
point, there was no longer a reason to be teaching DAX in a book about patterns.

Long story short, it started to make a lot of sense to author a new version of both the DAX Patterns
website and book. We rolled up our sleeves and created the book you are reading right now.

We did not use any of the content from the previous book. We wanted a fresh start. The entire library of
code is rewritten from scratch, using the latest DAX and Power BI features and adapting the code to Excel
2019 when necessary.

xvi ﻿ ﻿

In this new edition we made several choices:

•	 We greatly increased the share of the book dedicated to time intelligence calculations. Time
intelligence is by far the most widely studied topic. Therefore, it made sense to increase the number
of time-related calculations and patterns.

•	 Similarly, the New and returning customers pattern was an absolute hit. We gave that pattern a
bigger share of the book as well, increasing the number of formulas and models to compute new
and returning customers.

•	 We increased the number of patterns, adding several that – in our experience – are likely to be
useful to our readers.

•	 We decided to cut out a few patterns. For example, the chapter about statistical calculations was
useful back in 2015, because of the lack of statistical functions in DAX. Since then, DAX introduced
many new functions to compute the formulas that were explained in that chapter. There is no need
for that content in 2020.

•	 We no longer provide code snippets. In the previous book, most of the code was shown including
placeholders for the columns that readers were likely to change. We no longer do that. We show
code that works, because you often have to adapt the data model and other details in the formula.
We felt this would make the code more readable and easier to use and to adapt to your model.

•	 We optimized every single formula. All the code you see in these patterns has been thoroughly
reviewed for performance. This is not to say that these patterns are the very best. They are the best
we could come up with. If you can make the code better and faster, let us know! The comment
sections on the website are the right place to provide your feedback.

•	 We created a Power BI and an Excel version of each sample file. In the book, we include pictures of
Power BI reports showing the results of the code, but the examples you can download are available
in both formats: Power BI and Excel.

•	 We improved the readability of the eBook version of DAX Patterns. This meant keeping the code
formatting intact regardless of the eBook reader size.

Why we published this book
If you are wondering what the differences may be between the content of this book and the content
published on daxpatterns.com, we want to assure you that there are no differences. Should you buy the
book to obtain extra content? No. The access to the web site is free, where you can read the same content
as what you will find in this book and download the sample files for free.

That said, if you enjoy having an offline copy of the patterns, if you enjoy having a printed version,
if you would like to have it in your eBook collection, then you should purchase it. This way, you help us
keep the business up and running. We were surprised with the number of people who purchased the first
edition. This motivated us to further invest into this new version of the website and the pattern. We hope
the process will continue!

 ﻿ ﻿ xvii

By visiting the daxpatterns.com website, you will also see that we have recorded a video for each
pattern. This is where we go into more depth on how to use the patterns and how the formulas work. These
videos are for sale. You can buy all of them, or just the pattern you want to study more. It is an additional
service that many people have been asking for; we know some prefer the book, some prefer the video,
and many people want both!

How to use this book
What will you find in this book? Each standalone chapter covers a separate pattern and can be read
without having read the others. You can read the Currency conversion pattern without having ever looked
at the Basket analysis, or at any of the time-related calculations.

Each chapter about a pattern starts with a brief description of the business scenario; it then goes into
a more complete description of the solution, along with all the DAX code that needs to be implemented
in order to solve the scenario. We kept the description of the code short, using comments in the code to
document the measures where needed.

You need separate companion content for the book. At the beginning of each chapter, a short URL
points to the corresponding pattern on the daxpatterns.com website. You can download the sample files
for Power BI and Excel from the website.

The book is intended to be used as a reference. When you want to implement a pattern, you do not
want to read long descriptions: you want to see the code and the reason for it. Therefore, we kept it as
compact as possible, keeping the spotlight on the DAX code.

That said, if you want to implement a pattern we strongly suggest that you read the entire chapter
before implementing any code. The reason is that we sometimes present multiple solutions and you need
to choose the best for your specific scenario. For each pattern we also provide the demo files both in
Power BI and Power Pivot for Excel. Sometimes the code of the two versions is slightly different. The book
always presents the Power BI solution, which is using the latest features of DAX at the time of printing.
Some of those features are not available in Power Pivot – like calculated tables. This is the main reason for
the differences.

There is only one exception: time-related calculations. As we said, we gave the time-related calculations
more space in the book: we now present four different patterns for time-related calculations. Each of these
four patterns is huge. Together, they represent more than 40% of this book. This is why we created an
introductory chapter to the time-related calculations, which aims to help you choose the right pattern for
your scenario. If you need to implement time-related calculations, make sure to read the introduction first,
and then the full chapter covering the pattern you decide to use.

xviii ﻿ ﻿

Prerequisites
One word of advice to our readers: this book does not teach DAX.

You are expected to already know DAX to make the best use of these patterns. Most of the patterns
show advanced DAX techniques that you are welcome to study and use in your solutions. By reading this
book you will not learn DAX. But if you already know DAX, you will likely become a better DAX developer.

We suggest that you use these patterns with the latest version of Power BI or Excel, because DAX evolves
and improves over time. We tested the patterns on Power BI June 2020, Excel 2019, and Excel for Microsoft
365 version 2006. Most of the patterns work with earlier versions of Power BI and Excel, but we cannot
guarantee this because we did not thoroughly test for all the previous versions.

Acknowledgments
Last, but not least: the acknowledgments section.

The most important person we want to thank is you. This work was made possible by the discussions
we have had over time with readers, users, customers, and students like yourself. Therefore, even without
knowing it you have contributed to this content; and if you post comments in our public forums, you will
be contributing further.

That said, there are some people who directly contributed to the entire writing process: Daniil Maslyuk
meticulously reviewed each pattern, found all the errors we had made and provided invaluable feedback.
Claire Costa reviewed our English grammar and readability, making the book more precise and enjoyable.
Sergio Murru built the Excel versions of the sample files, which made the patterns available also to Power
Pivot for Excel users. Daniele Perilli is the reason behind the book and the website being as beautiful as
they are. We are responsible for the content and for any mistake, but if you can read accurate numbers, in
good English, in both Excel and Power BI, and with a gorgeous overall presentation, it is thanks to them.

Enjoy DAX!

125

CHAPTER 5

Custom time-related
calculations

Download sample files: https://sql.bi/dax-204

This pattern shows how to compute time-related calculations like year-to-date, same period last year, and
percentage growth using a custom calendar. This pattern does not rely on DAX built-in time intelligence
functions. All the measures refer to the fiscal calendar because the same measures, with a regular Gregorian
calendar, can be obtained using the Standard time-related calculations pattern.

There are several scenarios where the DAX built-in functions for time intelligence cannot provide
the right answers. For example, if your fiscal year starts on a month other than January, April, July, or
October, then you cannot use the DAX time intelligence functions for quarterly-related calculations. In
these scenarios, you need to rewrite the time intelligence logic of the built-in functions by using plain DAX
functions like FILTER and CALCULATE. Moreover, you must create a Date table that contains additional
columns to compute time periods like the previous quarter or a whole year. Indeed, the standard time
intelligence functions derive this information from the Date column in the Date table. The custom time-
related calculations pattern does not extract the information from the Date column and requires additional
columns.

The measures in this pattern work on a regular Gregorian calendar with the following assumptions:

• Years and quarters always start on the first day of a month.

• A month is always a calendar month.

In simpler words, this pattern works fine if the fiscal year starts on the first day of a month, and a quarter
is made of three regular months. For example, if the fiscal year starts on March 3, or all the fiscal quarters
must have 90 days, then the formulas do not work.

An example of a calendar that does not satisfy the requirements of this pattern is a week-based calendar.
If you need calculations over periods based on weeks, you should use the Week-related calculations
pattern.

Introduction to custom time intelligence calculations

The custom time intelligence calculations in this pattern modify the filter context over the Date table to

https://sql.bi/dax-204

126 CHAPTER 5 Custom time-related calculations

obtain the required result. The formulas are designed to apply filters to the lowest granularity required to
improve query performances. For example, a calculation over months works by modifying the filter context
at the month level, instead of the individual dates. This technique reduces the cost of computing the new
filter and applying it to the filter context. This optimization is especially useful when using DirectQuery,
even though it also improves performance on models imported in memory.

Because the pattern does not rely on the standard time intelligence functions, the Date table does not
have the requirements needed for standard DAX time intelligence functions.

For example, the Mark as Date Table setting is suggested, but not required. The formulas in this pattern
do not rely on the automatic REMOVEFILTERS applied over the Date table when the Date column is filtered.
Instead, the Date table must contain specific columns required by the measures. Therefore, although you
might already have a Date table in your model, you must read the next section (Building a Date table) to
verify that all the required columns are present in the Date table.

Building a Date table
The Date table used for custom time-related calculations is based on the months of the standard Gregorian
calendar table. If you already have a Date table, you can import the table and – if necessary – extend it
to include a set of columns containing the information required by the DAX formulas. We describe these
columns later in this section.

If a Date table is not available, you can create one using a DAX calculated table. As an example, the
following DAX expression defines the Date table used in this pattern, which has a fiscal year starting on
March 1:

Calculated table

Date =

VAR FirstFiscalMonth = 3 -- First month of the fiscal year

VAR FirstDayOfWeek = 0 -- 0 = Sunday, 1 = Monday, ...

VAR FirstSalesDate = MIN (Sales[Order Date])

VAR LastSalesDate = MAX (Sales[Order Date])

VAR FirstFiscalYear = -- Customizes the first fiscal year to use

 YEAR (FirstSalesDate)

 + 1 * (MONTH (FirstSalesDate) >= FirstFiscalMonth && FirstFiscalMonth > 1)

VAR LastFiscalYear = -- Customizes the last fiscal year to use

 YEAR (LastSalesDate)

 + 1 * (MONTH (LastSalesDate) >= FirstFiscalMonth && FirstFiscalMonth > 1)

RETURN

GENERATE (

 VAR FirstDay =

 DATE (

 FirstFiscalYear - 1 * (FirstFiscalMonth > 1),

 FirstFiscalMonth,

 1

)

 CHAPTER 5 Custom time-related calculations 127

 VAR LastDay =

 DATE (

 LastFiscalYear + 1 * (FirstFiscalMonth = 1),

 FirstFiscalMonth, 1

) - 1

 RETURN

 CALENDAR (FirstDay, LastDay),

 VAR CurrentDate = [Date]

 VAR Yr = YEAR (CurrentDate) -- Year Number

 VAR Mn = MONTH (CurrentDate) -- Month Number (1-12)

 VAR Mdn = DAY (CurrentDate) -- Day of Month

 VAR DateKey = Yr*10000+Mn*100+Mdn

 VAR Wd = -- Weekday Number (0 = Sunday, 1 = Monday, ...)

 WEEKDAY (CurrentDate + 7 - FirstDayOfWeek, 1)

 VAR WorkingDay = -- Working Day (1 = working, 0 = non-working)

 (WEEKDAY (CurrentDate, 1) IN { 2, 3, 4, 5, 6 })

 VAR Fyr = -- Fiscal Year Number

 Yr + 1 * (FirstFiscalMonth > 1 && Mn >= FirstFiscalMonth)

 VAR Fmn = -- Fiscal Month Number (1-12)

 Mn - FirstFiscalMonth + 1 + 12 * (Mn < FirstFiscalMonth)

 VAR Fqrn = -- Fiscal Quarter (string)

 ROUNDUP (Fmn / 3, 0)

 VAR Fmqn =

 MOD (FMn - 1, 3) + 1

 VAR Fqr = -- Fiscal Quarter (string)

 FORMAT (Fqrn, “\Q0”)

 VAR FirstDayOfYear =

 DATE (Fyr - 1 * (FirstFiscalMonth > 1), FirstFiscalMonth, 1)

 VAR Fydn =

 SUMX (

 CALENDAR (FirstDayOfYear, CurrentDate),

 1 * (MONTH ([Date]) <> 2 || DAY ([Date]) <> 29)

)

 RETURN ROW (

 “DateKey”, INT (DateKey),

 “Sequential Day Number”, INT ([Date]),

 “Year Month”, FORMAT (CurrentDate, “mmm yyyy”),

 “Year Month Number”, Yr * 12 + Mn - 1,

 “Fiscal Year”, “FY “ & Fyr,

 “Fiscal Year Number”, Fyr,

 “Fiscal Year Quarter”, “F” & Fqr & “-” & Fyr,

 “Fiscal Year Quarter Number”, CONVERT (Fyr * 4 + FQrn - 1, INTEGER),

 “Fiscal Quarter”, “F” & Fqr,

 “Month”, FORMAT (CurrentDate, “mmm”),

 “Fiscal Month Number”, Fmn,

 “Fiscal Month in Quarter Number”, Fmqn,

 “Day of Week”, FORMAT (CurrentDate, “ddd”),

 “Day of Week Number”, Wd,

 “Day of Month Number”, Mdn,

 “Day of Fiscal Year Number”, Fydn,

 “Working Day”, IF (WorkingDay, “Working Day”, “Non-Working Day”)

)

)

128 CHAPTER 5 Custom time-related calculations

The first two variables are useful to customize the beginning of both the fiscal year and the week.
The next variables detect the range of fiscal years required, based on the transactions in Sales. You can
customize FirstSalesDate and LastSalesDate to retrieve the first and last transaction date in your model, or
you can assign the first and last fiscal year in the FirstFiscalYear and LastFiscalYear variables.

The quarters are computed starting from the first month of the fiscal year. The Date table contains
hidden columns to support the correct sorting of years, quarters, and months. These hidden columns are
populated with sequential numbers that make it easy to apply filters to retrieve previous or following years,
quarters, and months, without relying on complex calculations at query time.

Among the many columns, one is worth expanding on. The Year Month Number column contains the
year number multiplied by 12, plus the month. The resulting number is hard to read, but it allows math
over months. Given the Year Month Number value, you can just subtract 12 to go back one year; this
gives you the value of Year Month Number corresponding to the same month in the previous year. Many
formulas use this characteristic to perform time-shifts.

In order to obtain the right visualization, the calendar columns must be configured in the data model
as follows – for each column you can see the data type and the format string, followed by a sample value:

•	 Date: Date, m/dd/yyyy (8/14/2007), used as a column to mark as date table (not required)
•	 DateKey: Whole Number, (20070814), used as an alternate key for relationships
•	 Sequential Day Number: Whole Number, Hidden (40040), same value of Date as integer
•	 Year Month: Text (Aug 2007)
•	 Year Month Number: Whole Number, Hidden (24091)
•	 Month: Text (Aug)
•	 Fiscal Month Number: Whole Number, Hidden (6)
•	 Fiscal Month in Quarter Number: Whole Number, Hidden (3)
•	 Fiscal Year: Text (FY 2008)
•	 Fiscal Year Number: Whole Number, Hidden (2008)
•	 Fiscal Year Quarter: Text (FQ2-2008)
•	 Fiscal Year Quarter Number: Whole Number, Hidden (8033)
•	 Fiscal Quarter: Text (FQ2)
•	 Day of Fiscal Year Number: Whole Number, Hidden (167)
•	 Day of Month Number: Whole Number, Hidden (14)

We want to introduce the concept of filter-safe columns. In a table, there are columns whose filters
need to be preserved. The filters over filter-safe columns are not altered by the time intelligence calculations.
They will be affecting the calculations presented in this pattern. The filter-safe columns in our sample table
are the following:

•	 Day of Week: ddd (Tue)
•	 Day of Week Number: Whole Number, Hidden (6)
•	 Working Day: Text (Working Day)

We further describe the behavior of filter-safe columns in the next section.

 CHAPTER 5 Custom time-related calculations 129

The Date table in this pattern has one hierarchy:

•	 Fiscal: Year (Fiscal Year), Quarter (Fiscal Year Quarter), Month (Year Month)

The columns are designed to simplify the formulas. For example, the Day of Fiscal Year Number column
contains the number of days since the beginning of the fiscal year, ignoring February 29 in leap years; this
number makes it easier to find a corresponding range of dates in the previous year.

The Date table must also include a hidden DateWithSales calculated column, used by some of the
formulas of this pattern:

Calculated column in the Date table

DateWithSales =

‘Date’[Date] <= MAX (Sales[Order Date])

The Date[DateWithSales] column is TRUE if the date is on or before the last date with sales; it is FALSE
otherwise. In other words, DateWithSales is TRUE for “past” dates and FALSE for “future” dates, where “past”
and “future” are relative to the last date with sales.

In case you import a Date table, you want to create columns that are similar to the ones we describe in
this pattern, in that they should behave the same way.

Understanding filter-safe columns
The Date table contains two types of columns: regular columns and filter-safe columns. The regular

columns are manipulated by the measures shown in this pattern. The filters over filter-safe columns are
always preserved and never altered by the measures of this pattern. An example clarifies this distinction.
The Year Month Number column is a regular column: the formulas in this pattern have the option of
changing its value during their computation.

For example, in order to compute the previous month the formulas change the filter context by
subtracting one to the value of Year Month Number in the filter context. Conversely, the Day of Week
column is a filter-safe column. If a user filters Monday to Friday, the formulas do not alter that filter on the
day of the week. Therefore, a previous-year measure keeps the filter on the day of the week; it replaces only
the filter on calendar columns such as year, month, and date.

To implement this pattern, you must identify which columns need to be treated as filter-safe columns,
because filter-safe columns require special handling. The following is the classification of the columns used
in the Date table of this pattern:

•	 Calendar columns: Date, DateKey, Sequential Day Number, Year Month, Year Month Number,
Month, Fiscal Month Number, Fiscal Month in Quarter Number, Fiscal Year, Fiscal Year Number,
Fiscal Year Quarter, Fiscal Year Quarter Number, Fiscal Quarter, Day of Fiscal Year Number, Day
of Month Number .

•	 Filter-safe columns: Day of Week, Day of Week Number, Working Day.

130 CHAPTER 5 Custom time-related calculations

The special handling of filter-safe columns pertains to the filter context. Every measure in this pattern
manipulates the filter context by replacing filters over all the calendar columns, without altering any filter
applied to the filter-safe columns. In other words, every measure follows two rules:

•	 Remove filters on calendar columns;
•	 Keep filters on filter-safe columns.

The ALLEXCEPT function can implement these requirements; specify the Date table in the first argument,
and the filter-safe columns in the following arguments:

CALCULATE (

 [Sales Amount],

 ALLEXCEPT (‘Date’, ‘Date’[Working Day], ‘Date’[Day of Week]),

 ... // Filters over one or more calendar columns

)

If the Date table did not have any filter-safe column, the filters could be removed by using REMOVEFILTERS
over the Date table instead of ALLEXCEPT:

CALCULATE (

 [Sales Amount],

 REMOVEFILTERS (‘Date’),

 ... // Filters over one or more calendar columns

)

If your Date table does not contain any filter-safe column, then you can use REMOVEFILTERS instead
of ALLEXCEPT in all the measures of this pattern. We provide a complete scenario that includes filter-safe
columns. Whenever possible, you can simplify it.

While the ALLEXCEPT should include all the filter-safe columns, we skip specifically the hidden filter-safe
columns used only to sort other columns. For example, we do not include Day of Week Number, which is a
hidden column used to sort the Day of Week column. The assumption is that the user never applies filters
on hidden columns; if this assumption is not true, then the hidden filter-safe columns must also be included
in the ALLEXCEPT arguments. You can find an example of the different results of using REMOVEFILTERS and
ALLEXCEPT in the Year-to-date total section of this pattern.

Controlling the visualization on future dates
Most of the time intelligence calculations should not display values for dates after the last date available.
For example, a year-to-date calculation can also show values for future dates, but we want to hide those
values. The dataset used in these examples ends on August 15, 2009. Therefore, we consider the month of
August 2009, the third quarter of 2009 (Q3-2009), and the year 2009 as the last time periods with data. Any
date later than August 15, 2019 is considered future, and we want to hide its values.

In order to avoid showing results in future dates, we use the following ShowValueForDates measure.
ShowValueForDates returns TRUE if the period selected is earlier than the last period with data:

 CHAPTER 5 Custom time-related calculations 131

Measure (hidden) in the Date table

ShowValueForDates :=

VAR LastDateWithData =

 CALCULATE (

 MAX (‘Sales’[Order Date]),

 REMOVEFILTERS ()

)

VAR FirstDateVisible =

 MIN (‘Date’[Date])

VAR Result =

 FirstDateVisible <= LastDateWithData

RETURN

 Result

The ShowValueForDates measure is hidden. It is a technical measure created to reuse the same logic
in many different time-related calculations, and the user should not use ShowValueForDates directly in a
report. The REMOVEFILTERS function removes filters from all tables in the model, because the purpose is
to retrieve the last date used in the Sales table regardless of filters.

132 CHAPTER 5 Custom time-related calculations

Naming convention
This section describes the naming convention we adopted to reference the time intelligence calculations.
A simple categorization shows whether a calculation:

• Shifts over a period of time, for example the same period in the previous year;

• Performs an aggregation, for example year-to-date; or,

• Compares two time periods, for example this year compared to last year.

Acronym Description Shift Aggregation Comparison

YTD Year-to-date X

QTD Quarter-to-date X

MTD Month-to-date X

MAT Moving annual total X

PY Previous year X

PQ Previous quarter X

PM Previous month X

PYC Previous year complete X

PQC Previous quarter complete X

PMC Previous month complete X

PP
Previous period (automatically selects
year, quarter, or month)

X

PYMAT Previous year moving annual total X X

YOY Year-over-year X

QOQ Quarter-over-quarter X

MOM Month-over-month X

MATG Moving annual total growth X X X

POP
Period-over-period (automatically selects
year, quarter, or month)

X

PYTD Previous year-to-date X X

PQTD Previous quarter-to-date X X

PMTD Previous month-to-date X X

YOYTD Year-over-year-to-date X X X

QOQTD Quarter-over-quarter-to-date X X X

MOMTD Month-over-month-to-date X X X

YTDOPY Year-to-date-over-previous-year X X X

QTDOPQ Quarter-to-date-over-previous-quarter X X X

MTDOPM Month-to-date-over-previous-month X X X

Contents

Introduction xv

Why we published this book� xvi

How to use this book� xvii

Prerequisites� xviii

Acknowledgments� xviii

Chapter 1	 Time-related calculations� 1

Chapter 2	 Standard time-related calculations� 5
Introduction to time intelligence calculations� 5

What are standard DAX time intelligence functions� 6

Disabling the Auto Date/Time� 7

Limitations of standard time intelligence functions� 8

Building a Date table� 9

Controlling the visualization in future dates� 10

Naming convention� 11

Computing period-to-date totals� 13

Year-to-date total� 13

Quarter-to-date total� 16

Month-to-date total� 17

Computing period-over-period growth� 19

Year-over-year growth� 19

Quarter-over-quarter growth� 21

Month-over-month growth� 22

Period-over-period growth� 24

Computing period-to-date growth� 26

Year-over-year-to-date growth� 26

Quarter-over-quarter-to-date growth� 28

Month-over-month-to-date growth� 30

Comparing period-to-date with previous full period� 32

Year-to-date over the full previous year� 32

Quarter-to-date over full previous quarter� 35

Month-to-date over full previous month� 36

Using moving annual total calculations� 38

Moving annual total� 38

Moving annual total growth� 40

Moving averages� 42

Moving average 30 days� 43

Moving average 3 months� 44

Moving average 1 year� 45

Filtering other date attributes� 46

Chapter 3	 Month-related calculations� 49
Introduction to month-related time intelligence calculations� 49

Building a Date table� 50

Naming convention� 55

Computing period-to-date totals� 56

Year-to-date total� 56

Quarter-to-date total� 58

Computing period-over-period growth� 59

Year-over-year growth� 59

Quarter-over-quarter growth� 61

Month-over-month growth� 63

Period-over-period growth� 65

Computing period-to-date growth� 67

Year-over-year-to-date growth� 67

Quarter-over-quarter-to-date growth� 69

Comparing period-to-date with a previous full period� 71

Year-to-date over the full previous year� 71

Quarter-to-date over full previous quarter� 73

Using moving annual total calculations� 75

Moving annual total� 75

Moving annual total growth� 76

Moving averages� 78

Moving average 3 months� 79

Moving average 1 year� 80

Managing years with more than 12 months� 81

Chapter 4	 Week-related calculations� 83
Introduction to week-related time intelligence calculations� 83

Building a Date table� 84

Understanding filter-safe columns� 86

Controlling the visualization in future dates� 88

Naming convention� 88

Computing period-to-date totals� 90

Year-to-date total� 90

Quarter-to-date total� 93

Month-to-date total� 94

Week-to-date total� 95

Computing period-over-period growth� 96

Year-over-year growth� 96

Quarter-over-quarter growth� 99

Week-over-week growth� 101

Period-over-period growth� 103

Computing period-to-date growth� 105

Year-over-year-to-date growth� 105

Quarter-over-quarter-to-date growth� 107

Week-over-week-to-date growth� 109

Comparing period-to-date with previous full period� 111

Year-to-date over the full previous year� 111

Quarter-to-date over the full previous quarter� 113

Week-to-date over the full previous week� 115

Using moving annual total calculations� 117

Moving annual total� 117

Moving annual total growth� 118

Moving averages� 120

Moving average 4 weeks� 121

Moving average 1 quarter� 123

Moving average 1 year� 124

Chapter 5	 Custom time-related calculations� 125
Introduction to custom time intelligence calculations� 125

Building a Date table� 126

Understanding filter-safe columns� 129

Controlling the visualization on future dates� 130

Naming convention� 132

Computing period-to-date totals� 133

Year-to-date total� 133

Quarter-to-date total� 136

Month-to-date total� 137

Computing period-over-period growth� 138

Year-over-year growth� 138

Quarter-over-quarter growth� 142

Month-over-month growth� 143

Period-over-period growth� 145

Computing period-to-date growth� 147

Year-over-year-to-date growth� 147

Quarter-over-quarter-to-date growth� 149

Month-over-month-to-date growth� 151

Comparing period-to-date with a previous full period� 155

Year-to-date over the full previous year� 155

Quarter-to-date over the full previous quarter� 156

Month-to-date over the full previous month� 158

Using moving annual total calculations� 160

Moving annual total� 160

Moving annual total growth� 162

Moving averages� 164

Moving average 30 days� 165

Moving average 3 months� 167

Moving average 1 year� 168

Chapter 6	 Comparing different time periods� 169
Pattern description� 169

Chapter 7	 Semi-additive calculations� 173
Introduction� 174

First and last date� 175

First and last date with data� 176

First and last date by customer� 178

Opening and closing balance� 181

Growth in period� 185

Chapter 8	 Cumulative total� 187
Basic scenario� 188

Cumulative total on columns that can be sorted� 191

Chapter 9	 Parameter table� 193
Changing the scale of a measure� 193

Multiple independent parameters� 195

Multiple dependent parameters� 197

Selecting top N products dynamically� 199

Chapter 10	 Static segmentation� 201
Basic pattern� 201

Price ranges by category� 205

Price ranges on large tables� 207

Chapter 11	 Dynamic segmentation� 209
Basic pattern� 209

Clustering by product growth� 213

Clustering by best status� 215

Chapter 12	 ABC classification� 217
Static ABC classification� 218

Snapshot ABC classification� 221

Dynamic ABC classification� 226

Finding the ABC class� 228

Chapter 13	 New and returning customers� 231
Introduction� 231

Pattern description� 236

Internal measures� 238

External measures� 239

How to use pattern measures� 240

Dynamic relative� 242

Internal measures� 242

New customers� 243

Lost customers� 245

Temporarily-lost customers� 245

Recovered customers� 247

Returning customers� 248

Dynamic absolute� 249

Internal measures� 249

New customers� 251

Lost customers� 252

Temporarily-lost customers� 252

Recovered customers� 254

Returning customers� 255

Generic dynamic pattern (dynamic by category)� 256

Internal measures� 257

New customers� 258

Lost customers� 261

Temporarily-lost customers� 262

Recovered customers� 264

Returning customers� 267

Snapshot absolute� 269

Creating the derived snapshot table in DAX� 273

Chapter 14	 Related distinct count� 277
Pattern description� 277

Chapter 15	 Events in progress� 283
Definition of events in progress� 284

Open orders� 286

Open orders with snapshot� 290

Chapter 16	 Ranking� 295
Static ranking� 296

Dynamic ranking� 298

Showing the top 3 products by category� 300

Chapter 17	 Hierarchies� 303
Detecting the current level of a hierarchy� 304

Percentage of parent node� 306

Chapter 18	 Parent-child hierarchies� 309
Introduction� 309

Basic Parent-child pattern� 312

Chart of accounts hierarchy� 316

Security pattern for a parent-child hierarchy� 324

Chapter 19	 Like-for-like comparison� 325
Introduction� 326

Same store sales with snapshot� 328

Same store sales without snapshot� 331

Chapter 20	 Transition matrix� 333
Introduction� 333

Static transition matrix� 336

Dynamic transition matrix� 339

Chapter 21	 Survey� 343
Pattern description� 343

Chapter 22	 Basket analysis� 349
Defining association rules metrics� 350

#� 351

And� 351

Total� 351

Both� 351

% Support� 351

% Confidence� 351

Lift� 352

Sample reports� 353

Basic pattern example� 355

Optimized pattern example� 360

Chapter 23	 Currency conversion� 363
Multiple source currencies, single reporting currency� 364

Single source currency, multiple reporting currencies� 367

Multiple source currencies, multiple reporting currencies� 370

Chapter 24	 Budget� 375
Introduction� 375

The data model� 377

Business choices� 379

Allocation based on the previous year� 379

Dismissed products do not contribute to the allocation� 379

New products have their own forecast amount� 380

Products can be dismissed or introduced on a yearly basis� 380

Forecast allocation� 381

Showing actuals and forecasts on the same chart� 384

Index 391

Get the full book

Paperback

• Amazon.com
• Amazon.ae
• Amazon.ca
• Amazon.co.jp
• Amazon.co.uk
• Amazon.com.au
• Amazon.com.br
• Amazon.com.mx
• Amazon.de
• Amazon.es
• Amazon.fr
• Amazon.in
• Amazon.it
• Amazon.nl

Kindle

• Amazon.com
• Amazon.ca
• Amazon.co.jp
• Amazon.co.uk
• Amazon.com.au
• Amazon.com.br
• Amazon.com.mx
• Amazon.de
• Amazon.es
• Amazon.fr
• Amazon.in
• Amazon.it
• Amazon.nl

Ebook

• Apple books
• Google books

PDF

• Lulu

https://www.amazon.com/dp/1735365203/
https://www.amazon.ae/dp/1735365203/
https://www.amazon.ca/dp/1735365203/
https://www.amazon.co.jp/dp/1735365203/
https://www.amazon.co.uk/dp/1735365203/
https://www.amazon.com.au/dp/1735365203/
https://www.amazon.com.br/dp/1735365203/
https://www.amazon.com.mx/dp/1735365203/
https://www.amazon.de/dp/1735365203/
https://www.amazon.es/dp/1735365203/
https://www.amazon.fr/dp/1735365203/
https://www.amazon.in/dp/1735365203/
https://www.amazon.it/dp/1735365203/
https://www.amazon.nl/dp/1735365203/
https://books.apple.com/book/dax-patterns/id1525404639
https://play.google.com/store/books/details/?id=eo_zDwAAQBAJ
https://www.lulu.com/en/us/shop/alberto-ferrari-and-marco-russo/dax-patterns/ebook/product-vq4v5m.html
https://www.amazon.com/dp/B08DRQT2ZM/
https://www.amazon.ca/dp/B08DRQT2ZM/
https://www.amazon.co.jp/dp/B08DRQT2ZM/
https://www.amazon.co.uk/dp/B08DRQT2ZM/
https://www.amazon.com.au/dp/B08DRQT2ZM/
https://www.amazon.com.br/dp/B08DRQT2ZM/
https://www.amazon.com.mx/dp/B08DRQT2ZM/
https://www.amazon.de/dp/B08DRQT2ZM/
https://www.amazon.es/dp/B08DRQT2ZM/
https://www.amazon.fr/dp/B08DRQT2ZM/
https://www.amazon.in/dp/B08DRQT2ZM/
https://www.amazon.it/dp/B08DRQT2ZM/
https://www.amazon.nl/dp/B08DRQT2ZM/

Copyright © 2020 by Alberto Ferrari and Marco Russo

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. Microsoft and the
trademarks listed at www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general are
trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, the publisher, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

Publisher / Editorial Production: SQLBI Corp., Las Vegas, NV, Unites States

Authors: Alberto Ferrari, Marco Russo
Copy Editor: Claire Costa
Technical Editors: Daniil Maslyuk, Sergio Murru
Cover Designer: Daniele Perilli

ISBN: 978-1-7353652-0-6
Library of Congress Control Number: 2020912594

All the samples and files used in this book are
available on www.daxpatterns.com

All the code in this book has been formatted
with www.daxformatter.com

https://www.daxpatterns.com
https://www.daxformatter.com

SECOND EDITION

A pattern is a general, reusable solution to a frequent or
common challenge.

This book is the second edition of the most
comprehensive collection of ready-to-use solutions
in DAX, that you can use in Microsoft Power BI,
Analysis Services Tabular, and Power Pivot for Excel.

IN THIS BOOK

Standard time-related
calculations

Month-related
calculations

Week-related
calculations

Custom time-related
calculations

Comparing different
time periods

Semi-additive
calculations

Transition
matrix

Parent-child
hierarchies

HierarchiesEvents in
progress

Ranking

Like-for-like
comparison

Currency
conversion

New and returning
customers

Basket
analysis

Survey

Budget

ABC
classification

Static
segmentation

Dynamic
segmentation

Parameters
table

Related distinct
count

Cumulative
total

www.daxpatterns.com

DAX PATTERNS

 Alberto Ferrari and Marco Russo
co-founded SQLBI.com, where they
publish frequent articles about DAX
and other Microsoft tools.
They are regular speakers at major
international conferences such as
Microsoft Ignite, PASS Summit, and
SQLBits. Both currently teach, consult,
and mentor on Microsoft Business
Intelligence technologies.

They have written several books,
including the best-seller
The Definitive Guide to DAX
published by Microsoft Press.

Find out more at
www.sqlbi.com/books

