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Introduction

A  t SQLBI we have a beautiful job: we are world-wide trainers and consultants. We meet thousands of 
people all over the world every year: a crowd of very diverse persons, sharing the same passion for 

Business Intelligence and DAX. We are asked to solve scenarios of various complexity by our students and 
customers. 

Say a student approaches you because they need to compute the number of new customers for their 
report. You solve the problem once, twice, three times… And at some point, you feel that the next time you 
need to answer the same question, you would love to have a ready-to-use solution. This is the reason we 
started the daxpatterns.com website in 2013. We started collecting patterns that repeat themselves. We 
created a collection of DAX formulas aimed at solving the most frequently-asked questions we receive. At 
that time, the goal was not to write a new book. Instead, our goal was to create some sort of memory bank 
for the solutions we would find. We thought we would be the main users of our own website.

As is often the case, real-life does not go according to plan. This time, for the better. The website had a 
tremendous success. Users downloaded the samples and achieved two different goals: they found a ready-
to-use solution to their problems, and they improved their DAX skills based on the formulas we authored. 
Because of the different file formats, we included samples for Excel 2010 and Excel 2013 – the latter still 
works with later versions of Excel. Eventually, we collected the content of the website into a book. That was 
the first edition of DAX Patterns. It was at the end of 2015. At the time, we had not yet published the first 
edition of The Definitive Guide to DAX. Therefore, we included a short introduction to DAX in the DAX 
Patterns book.

Many things changed over the following five years. DAX evolved with many useful features. Most 
importantly, Power BI hit the market and the number of users adopting DAX grew at an exponential rate. 
Today, most of the DAX users create a Power BI solution. When we published the first edition of this book, 
Power BI had not even been announced yet. 

During these five years, the process of collecting patterns continued. We met more students, we solved 
more problems, we also got better and better at DAX. Plus, we now had thousands of users who were able 
to provide feedback on previous patterns. Studying user comments gave us a better picture of what our 
readers needed. In parallel, we went on to publish two editions of The Definitive Guide to DAX. At that 
point, there was no longer a reason to be teaching DAX in a book about patterns. 

Long story short, it started to make a lot of sense to author a new version of both the DAX Patterns 
website and book. We rolled up our sleeves and created the book you are reading right now.

We did not use any of the content from the previous book. We wanted a fresh start. The entire library of 
code is rewritten from scratch, using the latest DAX and Power BI features and adapting the code to Excel 
2019 when necessary. 
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In this new edition we made several choices:

•	 We greatly increased the share of the book dedicated to time intelligence calculations. Time 
intelligence is by far the most widely studied topic. Therefore, it made sense to increase the number 
of time-related calculations and patterns.

•	 Similarly, the New and returning customers pattern was an absolute hit. We gave that pattern a 
bigger share of the book as well, increasing the number of formulas and models to compute new 
and returning customers.

•	 We increased the number of patterns, adding several that – in our experience – are likely to be 
useful to our readers.

•	 We decided to cut out a few patterns. For example, the chapter about statistical calculations was 
useful back in 2015, because of the lack of statistical functions in DAX. Since then, DAX introduced 
many new functions to compute the formulas that were explained in that chapter. There is no need 
for that content in 2020.

•	 We no longer provide code snippets. In the previous book, most of the code was shown including 
placeholders for the columns that readers were likely to change. We no longer do that. We show 
code that works, because you often have to adapt the data model and other details in the formula. 
We felt this would make the code more readable and easier to use and to adapt to your model.

•	 We optimized every single formula. All the code you see in these patterns has been thoroughly 
reviewed for performance. This is not to say that these patterns are the very best. They are the best 
we could come up with. If you can make the code better and faster, let us know! The comment 
sections on the website are the right place to provide your feedback.

•	 We created a Power BI and an Excel version of each sample file. In the book, we include pictures of 
Power BI reports showing the results of the code, but the examples you can download are available 
in both formats: Power BI and Excel.

•	 We improved the readability of the eBook version of DAX Patterns. This meant keeping the code 
formatting intact regardless of the eBook reader size.

Why we published this book
If you are wondering what the differences may be between the content of this book and the content 
published on daxpatterns.com, we want to assure you that there are no differences. Should you buy the 
book to obtain extra content? No. The access to the web site is free, where you can read the same content 
as what you will find in this book and download the sample files for free.

That said, if you enjoy having an offline copy of the patterns, if you enjoy having a printed version, 
if you would like to have it in your eBook collection, then you should purchase it. This way, you help us 
keep the business up and running. We were surprised with the number of people who purchased the first 
edition. This motivated us to further invest into this new version of the website and the pattern. We hope 
the process will continue!
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By visiting the daxpatterns.com website, you will also see that we have recorded a video for each 
pattern. This is where we go into more depth on how to use the patterns and how the formulas work. These 
videos are for sale. You can buy all of them, or just the pattern you want to study more. It is an additional 
service that many people have been asking for; we know some prefer the book, some prefer the video, 
and many people want both!

How to use this book
What will you find in this book? Each standalone chapter covers a separate pattern and can be read 
without having read the others. You can read the Currency conversion pattern without having ever looked 
at the Basket analysis, or at any of the time-related calculations.

Each chapter about a pattern starts with a brief description of the business scenario; it then goes into 
a more complete description of the solution, along with all the DAX code that needs to be implemented 
in order to solve the scenario. We kept the description of the code short, using comments in the code to 
document the measures where needed.

You need separate companion content for the book. At the beginning of each chapter, a short URL 
points to the corresponding pattern on the daxpatterns.com website. You can download the sample files 
for Power BI and Excel from the website.

The book is intended to be used as a reference. When you want to implement a pattern, you do not 
want to read long descriptions: you want to see the code and the reason for it. Therefore, we kept it as 
compact as possible, keeping the spotlight on the DAX code.

That said, if you want to implement a pattern we strongly suggest that you read the entire chapter 
before implementing any code. The reason is that we sometimes present multiple solutions and you need 
to choose the best for your specific scenario. For each pattern we also provide the demo files both in 
Power BI and Power Pivot for Excel. Sometimes the code of the two versions is slightly different. The book 
always presents the Power BI solution, which is using the latest features of DAX at the time of printing. 
Some of those features are not available in Power Pivot – like calculated tables. This is the main reason for 
the differences.

There is only one exception: time-related calculations. As we said, we gave the time-related calculations 
more space in the book: we now present four different patterns for time-related calculations. Each of these 
four patterns is huge. Together, they represent more than 40% of this book. This is why we created an 
introductory chapter to the time-related calculations, which aims to help you choose the right pattern for 
your scenario. If you need to implement time-related calculations, make sure to read the introduction first, 
and then the full chapter covering the pattern you decide to use.
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Prerequisites
One word of advice to our readers: this book does not teach DAX.

You are expected to already know DAX to make the best use of these patterns. Most of the patterns 
show advanced DAX techniques that you are welcome to study and use in your solutions. By reading this 
book you will not learn DAX. But if you already know DAX, you will likely become a better DAX developer.

We suggest that you use these patterns with the latest version of Power BI or Excel, because DAX evolves 
and improves over time. We tested the patterns on Power BI June 2020, Excel 2019, and Excel for Microsoft 
365 version 2006. Most of the patterns work with earlier versions of Power BI and Excel, but we cannot 
guarantee this because we did not thoroughly test for all the previous versions.

Acknowledgments
Last, but not least: the acknowledgments section.

The most important person we want to thank is you. This work was made possible by the discussions 
we have had over time with readers, users, customers, and students like yourself. Therefore, even without 
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That said, there are some people who directly contributed to the entire writing process: Daniil Maslyuk 
meticulously reviewed each pattern, found all the errors we had made and provided invaluable feedback. 
Claire Costa reviewed our English grammar and readability, making the book more precise and enjoyable. 
Sergio Murru built the Excel versions of the sample files, which made the patterns available also to Power 
Pivot for Excel users. Daniele Perilli is the reason behind the book and the website being as beautiful as 
they are. We are responsible for the content and for any mistake, but if you can read accurate numbers, in 
good English, in both Excel and Power BI, and with a gorgeous overall presentation, it is thanks to them.  

Enjoy DAX!
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CHAPTER 5

Custom time-related 
calculations

Download sample files: https://sql.bi/dax-204

This pattern shows how to compute time-related calculations like year-to-date, same period last year, and 
percentage growth using a custom calendar. This pattern does not rely on DAX built-in time intelligence 
functions. All the measures refer to the fiscal calendar because the same measures, with a regular Gregorian 
calendar, can be obtained using the Standard time-related calculations pattern.

There are several scenarios where the DAX built-in functions for time intelligence cannot provide 
the right answers. For example, if your fiscal year starts on a month other than January, April, July, or 
October, then you cannot use the DAX time intelligence functions for quarterly-related calculations. In 
these scenarios, you need to rewrite the time intelligence logic of the built-in functions by using plain DAX 
functions like FILTER and CALCULATE. Moreover, you must create a Date table that contains additional 
columns to compute time periods like the previous quarter or a whole year. Indeed, the standard time 
intelligence functions derive this information from the Date column in the Date table. The custom time-
related calculations pattern does not extract the information from the Date column and requires additional 
columns.

The measures in this pattern work on a regular Gregorian calendar with the following assumptions:

• Years and quarters always start on the first day of a month.

• A month is always a calendar month.

In simpler words, this pattern works fine if the fiscal year starts on the first day of a month, and a quarter 
is made of three regular months. For example, if the fiscal year starts on March 3, or all the fiscal quarters 
must have 90 days, then the formulas do not work.

An example of a calendar that does not satisfy the requirements of this pattern is a week-based calendar. 
If you need calculations over periods based on weeks, you should use the Week-related calculations 
pattern.

Introduction to custom time intelligence calculations

The custom time intelligence calculations in this pattern modify the filter context over the Date table to 

https://sql.bi/dax-204
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obtain the required result. The formulas are designed to apply filters to the lowest granularity required to 
improve query performances. For example, a calculation over months works by modifying the filter context 
at the month level, instead of the individual dates. This technique reduces the cost of computing the new 
filter and applying it to the filter context. This optimization is especially useful when using DirectQuery, 
even though it also improves performance on models imported in memory.

Because the pattern does not rely on the standard time intelligence functions, the Date table does not 
have the requirements needed for standard DAX time intelligence functions.

For example, the Mark as Date Table setting is suggested, but not required. The formulas in this pattern 
do not rely on the automatic REMOVEFILTERS applied over the Date table when the Date column is filtered. 
Instead, the Date table must contain specific columns required by the measures. Therefore, although you 
might already have a Date table in your model, you must read the next section (Building a Date table) to 
verify that all the required columns are present in the Date table.

Building a Date table
The Date table used for custom time-related calculations is based on the months of the standard Gregorian 
calendar table. If you already have a Date table, you can import the table and – if necessary – extend it 
to include a set of columns containing the information required by the DAX formulas. We describe these 
columns later in this section.

If a Date table is not available, you can create one using a DAX calculated table. As an example, the 
following DAX expression defines the Date table used in this pattern, which has a fiscal year starting on 
March 1:

Calculated table

Date =  

VAR FirstFiscalMonth = 3  -- First month of the fiscal year 

VAR FirstDayOfWeek = 0    -- 0 = Sunday, 1 = Monday, ... 

VAR FirstSalesDate = MIN ( Sales[Order Date] ) 

VAR LastSalesDate = MAX ( Sales[Order Date] ) 

VAR FirstFiscalYear =     -- Customizes the first fiscal year to use 

    YEAR ( FirstSalesDate )  

    + 1 * ( MONTH ( FirstSalesDate ) >= FirstFiscalMonth && FirstFiscalMonth > 1) 

VAR LastFiscalYear =      -- Customizes the last fiscal year to use 

    YEAR ( LastSalesDate )  

    + 1 * ( MONTH ( LastSalesDate ) >= FirstFiscalMonth && FirstFiscalMonth > 1) 

RETURN 

GENERATE ( 

    VAR FirstDay =  

        DATE (  

            FirstFiscalYear - 1 * (FirstFiscalMonth > 1),  

            FirstFiscalMonth,  

            1  

        )
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    VAR LastDay = 

        DATE (  

            LastFiscalYear + 1 * (FirstFiscalMonth = 1),  

            FirstFiscalMonth, 1  

        ) - 1 

    RETURN 

        CALENDAR ( FirstDay, LastDay ), 

 

    VAR CurrentDate = [Date] 

    VAR Yr = YEAR ( CurrentDate )        -- Year Number 

    VAR Mn = MONTH ( CurrentDate )       -- Month Number (1-12) 

    VAR Mdn = DAY ( CurrentDate )        -- Day of Month 

    VAR DateKey = Yr*10000+Mn*100+Mdn 

    VAR Wd =                             -- Weekday Number (0 = Sunday, 1 = Monday, ...) 

        WEEKDAY ( CurrentDate + 7 - FirstDayOfWeek, 1 ) 

    VAR WorkingDay =                     -- Working Day (1 = working, 0 = non-working) 

        ( WEEKDAY ( CurrentDate, 1 ) IN { 2, 3, 4, 5, 6 } ) 

    VAR Fyr =                            -- Fiscal Year Number 

        Yr + 1 * ( FirstFiscalMonth > 1 && Mn >= FirstFiscalMonth ) 

    VAR Fmn =                            -- Fiscal Month Number (1-12) 

        Mn - FirstFiscalMonth + 1 + 12 * (Mn < FirstFiscalMonth) 

    VAR Fqrn =                           -- Fiscal Quarter (string) 

        ROUNDUP ( Fmn / 3, 0 ) 

    VAR Fmqn = 

        MOD ( FMn - 1, 3 ) + 1 

    VAR Fqr =                            -- Fiscal Quarter (string) 

        FORMAT ( Fqrn, “\Q0” ) 

    VAR FirstDayOfYear = 

        DATE ( Fyr - 1 * (FirstFiscalMonth > 1), FirstFiscalMonth, 1 ) 

    VAR Fydn =  

        SUMX (  

            CALENDAR ( FirstDayOfYear, CurrentDate ),  

            1 * ( MONTH ( [Date] ) <> 2 || DAY ( [Date] ) <> 29 ) 

        ) 

    RETURN ROW ( 

        “DateKey”, INT ( DateKey ), 

        “Sequential Day Number”, INT ( [Date] ), 

        “Year Month”, FORMAT ( CurrentDate, “mmm yyyy” ), 

        “Year Month Number”, Yr * 12 + Mn - 1, 

        “Fiscal Year”, “FY “ & Fyr, 

        “Fiscal Year Number”, Fyr, 

        “Fiscal Year Quarter”, “F” & Fqr & “-” & Fyr, 

        “Fiscal Year Quarter Number”, CONVERT ( Fyr * 4 + FQrn - 1, INTEGER ), 

        “Fiscal Quarter”, “F” & Fqr, 

        “Month”, FORMAT ( CurrentDate, “mmm” ), 

        “Fiscal Month Number”, Fmn, 

        “Fiscal Month in Quarter Number”,  Fmqn, 

        “Day of Week”, FORMAT ( CurrentDate, “ddd” ), 

        “Day of Week Number”, Wd, 

        “Day of Month Number”, Mdn, 

        “Day of Fiscal Year Number”, Fydn, 

        “Working Day”, IF ( WorkingDay, “Working Day”, “Non-Working Day” ) 

    ) 

)
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The first two variables are useful to customize the beginning of both the fiscal year and the week. 
The next variables detect the range of fiscal years required, based on the transactions in Sales. You can 
customize FirstSalesDate and LastSalesDate to retrieve the first and last transaction date in your model, or 
you can assign the first and last fiscal year in the FirstFiscalYear and LastFiscalYear variables.

The quarters are computed starting from the first month of the fiscal year. The Date table contains 
hidden columns to support the correct sorting of years, quarters, and months. These hidden columns are 
populated with sequential numbers that make it easy to apply filters to retrieve previous or following years, 
quarters, and months, without relying on complex calculations at query time.

Among the many columns, one is worth expanding on. The Year Month Number column contains the 
year number multiplied by 12, plus the month. The resulting number is hard to read, but it allows math 
over months. Given the Year Month Number value, you can just subtract 12 to go back one year; this 
gives you the value of Year Month Number corresponding to the same month in the previous year. Many 
formulas use this characteristic to perform time-shifts.

In order to obtain the right visualization, the calendar columns must be configured in the data model 
as follows – for each column you can see the data type and the format string, followed by a sample value:

•	 Date: Date, m/dd/yyyy (8/14/2007), used as a column to mark as date table (not required)
•	 DateKey: Whole Number, (20070814), used as an alternate key for relationships
•	 Sequential Day Number: Whole Number, Hidden (40040), same value of Date as integer
•	 Year Month: Text (Aug 2007)
•	 Year Month Number: Whole Number, Hidden (24091)
•	 Month: Text (Aug)
•	 Fiscal Month Number: Whole Number, Hidden (6)
•	 Fiscal Month in Quarter Number: Whole Number, Hidden (3)
•	 Fiscal Year: Text (FY 2008)
•	 Fiscal Year Number: Whole Number, Hidden (2008)
•	 Fiscal Year Quarter: Text (FQ2-2008)
•	 Fiscal Year Quarter Number: Whole Number, Hidden (8033) 
•	 Fiscal Quarter: Text (FQ2)
•	 Day of Fiscal Year Number: Whole Number, Hidden (167)
•	 Day of Month Number: Whole Number, Hidden (14)

We want to introduce the concept of filter-safe columns. In a table, there are columns whose filters 
need to be preserved. The filters over filter-safe columns are not altered by the time intelligence calculations. 
They will be affecting the calculations presented in this pattern. The filter-safe columns in our sample table 
are the following:

•	 Day of Week: ddd (Tue)
•	 Day of Week Number: Whole Number, Hidden (6)
•	 Working Day: Text (Working Day)

We further describe the behavior of filter-safe columns in the next section.
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The Date table in this pattern has one hierarchy:

•	 Fiscal: Year (Fiscal Year), Quarter (Fiscal Year Quarter), Month (Year Month)

The columns are designed to simplify the formulas. For example, the Day of Fiscal Year Number column 
contains the number of days since the beginning of the fiscal year, ignoring February 29 in leap years; this 
number makes it easier to find a corresponding range of dates in the previous year.

The Date table must also include a hidden DateWithSales calculated column, used by some of the 
formulas of this pattern: 

Calculated column in the Date table

DateWithSales =  

‘Date’[Date] <= MAX ( Sales[Order Date] )

The Date[DateWithSales] column is TRUE if the date is on or before the last date with sales; it is FALSE 
otherwise. In other words, DateWithSales is TRUE for “past” dates and FALSE for “future” dates, where “past” 
and “future” are relative to the last date with sales.

In case you import a Date table, you want to create columns that are similar to the ones we describe in 
this pattern, in that they should behave the same way. 

Understanding filter-safe columns
The Date table contains two types of columns: regular columns and filter-safe columns. The regular 

columns are manipulated by the measures shown in this pattern. The filters over filter-safe columns are 
always preserved and never altered by the measures of this pattern. An example clarifies this distinction. 
The Year Month Number column is a regular column: the formulas in this pattern have the option of 
changing its value during their computation.

For example, in order to compute the previous month the formulas change the filter context by 
subtracting one to the value of Year Month Number in the filter context. Conversely, the Day of Week 
column is a filter-safe column. If a user filters Monday to Friday, the formulas do not alter that filter on the 
day of the week. Therefore, a previous-year measure keeps the filter on the day of the week; it replaces only 
the filter on calendar columns such as year, month, and date.

To implement this pattern, you must identify which columns need to be treated as filter-safe columns, 
because filter-safe columns require special handling. The following is the classification of the columns used 
in the Date table of this pattern:

•	 Calendar columns: Date, DateKey, Sequential Day Number, Year Month, Year Month Number, 
Month, Fiscal Month Number, Fiscal Month in Quarter Number, Fiscal Year, Fiscal Year Number, 
Fiscal Year Quarter, Fiscal Year Quarter Number, Fiscal Quarter, Day of Fiscal Year Number, Day 
of Month Number .

•	 Filter-safe columns: Day of Week, Day of Week Number, Working Day.
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The special handling of filter-safe columns pertains to the filter context. Every measure in this pattern 
manipulates the filter context by replacing filters over all the calendar columns, without altering any filter 
applied to the filter-safe columns. In other words, every measure follows two rules:

•	 Remove filters on calendar columns;
•	 Keep filters on filter-safe columns.

The ALLEXCEPT function can implement these requirements; specify the Date table in the first argument, 
and the filter-safe columns in the following arguments:

CALCULATE ( 

    [Sales Amount], 

    ALLEXCEPT ( ‘Date’, ‘Date’[Working Day], ‘Date’[Day of Week] ), 

    ... // Filters over one or more calendar columns 

)

If the Date table did not have any filter-safe column, the filters could be removed by using REMOVEFILTERS 
over the Date table instead of ALLEXCEPT:

CALCULATE ( 

    [Sales Amount], 

    REMOVEFILTERS ( ‘Date’ ), 

    ... // Filters over one or more calendar columns 

)

If your Date table does not contain any filter-safe column, then you can use REMOVEFILTERS instead 
of ALLEXCEPT in all the measures of this pattern. We provide a complete scenario that includes filter-safe 
columns. Whenever possible, you can simplify it.

While the ALLEXCEPT should include all the filter-safe columns, we skip specifically the hidden filter-safe 
columns used only to sort other columns. For example, we do not include Day of Week Number, which is a 
hidden column used to sort the Day of Week column. The assumption is that the user never applies filters 
on hidden columns; if this assumption is not true, then the hidden filter-safe columns must also be included 
in the ALLEXCEPT arguments. You can find an example of the different results of using REMOVEFILTERS and 
ALLEXCEPT in the Year-to-date total section of this pattern.

Controlling the visualization on future dates
Most of the time intelligence calculations should not display values for dates after the last date available. 
For example, a year-to-date calculation can also show values for future dates, but we want to hide those 
values. The dataset used in these examples ends on August 15, 2009. Therefore, we consider the month of 
August 2009, the third quarter of 2009 (Q3-2009), and the year 2009 as the last time periods with data. Any 
date later than August 15, 2019 is considered future, and we want to hide its values.

In order to avoid showing results in future dates, we use the following ShowValueForDates measure. 
ShowValueForDates returns TRUE if the period selected is earlier than the last period with data:
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Measure (hidden) in the Date table

ShowValueForDates := 

VAR LastDateWithData = 

    CALCULATE (  

        MAX ( ‘Sales’[Order Date] ),  

        REMOVEFILTERS ()  

    ) 

VAR FirstDateVisible = 

    MIN ( ‘Date’[Date] ) 

VAR Result =  

    FirstDateVisible <= LastDateWithData 

RETURN 

    Result

The ShowValueForDates measure is hidden. It is a technical measure created to reuse the same logic 
in many different time-related calculations, and the user should not use ShowValueForDates directly in a 
report. The REMOVEFILTERS function removes filters from all tables in the model, because the purpose is 
to retrieve the last date used in the Sales table regardless of filters.
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Naming convention
This section describes the naming convention we adopted to reference the time intelligence calculations. 
A simple categorization shows whether a calculation:

• Shifts over a period of time, for example the same period in the previous year;

• Performs an aggregation, for example year-to-date; or,

• Compares two time periods, for example this year compared to last year.

Acronym Description Shift Aggregation Comparison

YTD Year-to-date X

QTD Quarter-to-date X

MTD Month-to-date X

MAT Moving annual total X

PY Previous year X

PQ Previous quarter X

PM Previous month X

PYC Previous year complete X

PQC Previous quarter complete X

PMC Previous month complete X

PP
Previous period (automatically selects 
year, quarter, or month)

X

PYMAT Previous year moving annual total X X

YOY Year-over-year X

QOQ Quarter-over-quarter X

MOM Month-over-month X

MATG Moving annual total growth X X X

POP
Period-over-period (automatically selects 
year, quarter, or month)

X

PYTD Previous year-to-date X X

PQTD Previous quarter-to-date X X

PMTD Previous month-to-date X X

YOYTD Year-over-year-to-date X X X

QOQTD Quarter-over-quarter-to-date X X X

MOMTD Month-over-month-to-date X X X

YTDOPY Year-to-date-over-previous-year X X X

QTDOPQ Quarter-to-date-over-previous-quarter X X X

MTDOPM Month-to-date-over-previous-month X X X
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